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The internal friction of aluminium foams with various porosities was measured in the range
of acoustic frequencies over a wide strain-amplitude range by the bending-vibration
method. The measured internal friction shows that aluminium foams have a damping
capacity which is enhanced in comparison with bulk aluminium, increases with increasing
porosity, decreases with increasing frequency and increases with increasing strain
amplitude. In order to explain the behaviour of the internal friction, a mechanism of internal
dissipation energy was presented, and an approximate expression for internal friction is
derived which is based on the equations of plane waves in elastic material with voids. This
expression can account for the dependence of the internal friction on porosity, pore size and
frequency. To gain further insight into the dependence of the internal friction on amplitude,
the non-linear characteristics of oscillations were observed, and it was found that the
resonance curves are asymmetric and the resonant frequencies are proportional to the
square of amplitude with a negative slope. On the basis of the equations of the motion and
the experimental results, the non-linearity of oscillations was ascribed to a non-linear
damping term and an approximate expression for the damping coefficient with respect to
amplitude was obtained.  1998 Chapman & Hall
1. Introduction
Foamed metals are earning growing attention as en-
gineering materials. These exceptionally light-weight
materials possess a unique combination of properties,
such as impact energy absorption capacity, air and
water permeability and favourable sound absorption
properties, and are expected to help engineers to im-
prove the performance of many products. There are
many methods available to produce foamed metals,
including casting, power metallurgy, metallic deposition
and sputter deposition [1]. Aluminium (Al) has been
chosen as the foaming material because of its lightness,
low melting point and other favourable properties.

Foamed Al has a good machinability and formabil-
ity and shows excellent antiweather properties. It is
now expected to be used not only as a building mater-
ial but also as a new functional material for noise
reduction or as energy-absorbing material in cars.

The mechanical properties of metallic foams are of
practical and scientific importance. Although there
have been a great deal of studies on these properties
using various techniques, studies using the internal
friction have hardly appeared in the literature (see, for
example, [2, 3]). Foamed Al is considered as a poten-
tial material for noise protection components in many
applications of lightweight structures. Hence it is im-
0022—2461 ( 1998 Chapman & Hall
portant to measure the internal friction (IF) of foamed
Al in the acoustic frequency range. In the present
paper, we measure the dependence of IF of foamed Al
on its porosity, the applied frequency and the ampli-
tude of vibration. We also discuss the reasons for the
IF behaviour observed and for the non-linearity of
oscillations.

2. Experimental procedure
2.1. Specimens
The specimens denoted FAl* were prepared by a pow-
der-metallurgical foaming technique at Fraunhofer in-
stitute [4]. Metal or alloy powder was mixed with
a small amount of foaming agent. The mixture was
then compacted, resulting in a semifinished product in
which the foaming agent was distributed homogene-
ously. Metal foam parts were then obtained by heating
the semifinished material to its melting point. The
specimens denoted FAl were fabricated by the slurry
foaming technique [5, 6] at the Laboratory of Internal
Friction. Foamed Al was fabricated by adding fine Al
powder to a mixture consisting mainly of aluminium
hydroxide and orthophosphoric acid. To increase the
mechanical strength of foamed Al, the following
measures were taken.
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(i) Since oxidation film is harmful to sintering, Al
powder was tumbled in a ball mill.

(ii) The mixture of Al powder and foaming agent
was pressed before foaming.

(iii) Al foams were given a pre-sintering at 300 °C
for 30 min and sintering treatment in vacuum at tem-
peratures slightly below the melting point of Al for
120 min.
Because of (ii), we could not produce higher-porosity
foams. The size of all specimens was cut to
73 mm]3—8 mm]3—5 mm.

2.2. Measurements
The IF was measured by means of a flexural vibration
method. The specimen was freely suspended at the
first resonance node with a fine wire. One end of the
specimen was vibrated at a constant amplitude by
a magnetic drive. The amplitude of free attenuation
was measured with a magnetic detector after cutting
off the driving power [7]. The frequencies of vibration
are given by
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where f is the vibration frequency, a"0.752 81p and
R is the radius of gyration of a cross-section about the
neutral axis of bending. The length, Young’s modulus
and specimen density are denoted by l, E and q,
respectively. The IF was calculated as

Q~1"
K

N
(2)

where N is the number of free specimen vibrations
corresponding to a definite lowering of their ampli-
tude and K is an apparatus constant. The accuracy of
the vibrational decay can be performed with a very
high accuracy (1%). IF measurements were performed
under vacuum at about 10~3 torr. The testing temper-
ature was room temperature. The porosity of each
specimen was calculated from measurements of its
mass and volume. The pore size was calculated as the
mean value of 20 individual pore diameter measure-
ments on each specimen. According to Equation 1, the
resonant frequency may be changed by changing the
radius of gyration R, i.e., by changing its thickness.

3. Results and discussion
3.1. Internal friction of foamed Al, Zn—Al

damping alloy and bulk Al
The experimental results for IF of three kinds of speci-
men at identical strain amplitudes are shown in
Table I. Since the IF usually depends on frequency,
the testing frequencies for different samples were
chosen to be around 1000 Hz.

From Table I, conclusions may be drawn as fol-
lows: IF of foamed Al is about five times that of the
Zn—Al damping alloy, and it is very much larger than
that of bulk Al. The conclusions imply that attenu-
ation in foamed Al is not caused by the usual machan-
ism but by the pores.

It is widely accepted that any kind of porosity
enhances damping owing to stress concentration and
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TABLE I IF, Q~1, for three kinds of specimen

Specimen Frequency Porosity Pore size Q~1]103

(Hz) (%) (mm)

FAI 992 65 0.8 9.1
FAI* 1005 82 1.5 7.3
Zn—Al 1001 0 0 1.7
Al 998 0 0 0.4

mode conversion around pores. This mechanism ap-
plies to microporosity as well as to the large pores
found in metal foams [2, 8]. Especially in thin mem-
branes, an external force, even when small, can lead to
high multiaxial stresses. In other words, the elastic
modulus of the pores differs from that of the matrix,
which is called inhomogeneity inclusion [9]. When
a force is imposed on the foamed Al, an in-
homogeneous stress field, resulting from the in-
homogeneity, is built up. Then, specific IF may arise
from the inhomogeneous stress field to relax the stress
concentration as soon as some irreversible process is
actived. That is, the inhomogeneous stress field causes
pore to dilate (or contract) and distort and, corres-
pondingly, gives rise to the dilatation and distortion
energy. The dilatation and distortion energy compo-
nents transform to heat by dislocations and molecular
collisions during cyclic movement. In addition, the
movements of dislocations tend to end at pore surface
where there is high surface energy converted from
dislocation mobility. Therefore pores may be high-
energy dissipation resources. The damping capacity of
foamed Al is therefore higher than that of bulk Al.

3.2. Relationship between internal friction
and porosity

The experimental results on the relation between IF
and porosity are shown in Table II. The testing fre-
quencies of different samples were about 1000 Hz. The
strain amplitudes of samples with different porosity
are identical.

From Table II, we can see that the IF of foamed Al
increases with increasing porosity. It also shows that
pores may be high-energy dissipation resources for
foamed Al. The higher the porosity, the larger is the
stress concentration resulting from the inhomogeneity
and the greater are the dilatation and distortion of
pores due to the stress disturbance. From the consid-
eration of Section 3.1, it is reasonable that the IF of
foamed Al increases with increasing porosity.

3.3. Relationship between internal friction
and frequency

For specimens FAl* and FAl, the values of IF are
plotted against frequency in Fig. 1. The strain ampli-
tudes are identical at different testing frequencies. The
results shown in this figure suggest that the value of IF
decreases with increasing frequency.

Foamed Al is composed of the metallic matrix and
the pores. It is the elastic modulus difference between
the matrix and the pores that results in a marked



TABLE II The relation between porosity and IF for FAI

Porosity Pore size Frequency Q~1]103

(mm) (Hz)

0.52 0.8 1047 6.4
0.58 0.8 996 7.1
0.65 0.8 983 8.4
0.69 0.8 1089 8.8
0.76 0.8 1012 9.4

Figure 1 IF of FAI* (d) and FAI (s) for different frequencies.
Line 1, ½"1.19#7.91X; line 2, ½"1.35#6.35X.

inhomogeneous stress field. When a bar is bent,
stretching occurs at some points and compression at
others, and the inhomogeneous stress field causes the
dilatation and distortion of pores, which in turn cause
the change in the local distribution of the matrix. The
bulk density of foamed Al can be written as the prod-
uct of two fields: the density field of the matrix Al and
volume fraction field. The change in local volume
fraction of the matrix from a reference value of the
local volume fraction shows the dilatation and distor-
tion of pores. The reference configuration is free of
stress and strain. The greater the dilatation and distor-
tion of pores, the larger is the change in local volume
fraction.

The linear theory of elastic materials with pores
deals with small changes from a reference configura-
tion of a porous body [10—12]. In this configuration,
the bulk density, q, matrix density, c, and matrix
volume fraction, v, are related by

q
3
"c

3
v
3

(3)

v
3
": v

3
(x) dv (4)

and the body is taken to be strain free. Here x is the
spatial position vector in Cartesian coordinates, v

3
(x)

is the local matrix volume fraction of a reference
configuration, v is the volume and dv is the increment
of v considered as tending to zero. The theory employs
the same balance equations as proposed by Goodman
and Cowin [10] and includes a rate effect in the
volumetric response that may be due to inelastic sur-
face effects in the vicinity of void boundaries. The
independent kinematical variables in the linear theory
are the displacement field, u (x, t), from the reference
configuration and the change, / (x, t), in local volume
fraction from the reference volume fraction

/(x, t)"v(x, t)!v
3
(x) (5)

: w (x, t) dv": v
3
(x) dv (6)

where t is time. The parameter / (x, t) represents the
dilatation and distortion of pores. The infinitesimal
strain tensor, e(x, t), is determined from the displace-
ment field, u

i
, according to
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where the comma followed by a lower-case Latin
letter indicates a partial derivative with respect to the
indicated coordinate.

The equations of motion for the medium considered
are the balance of linear momentum

qü
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and the balance of equilibrated force

qj/® "h
i, i
#g#ql (9)

Here ¹
ij

is the symmetric stress tensor, b
i
is the body

force vector, h
i
is the equilibrated stress vector, j is the

equilibrated inertia, g is the intrinsic equilibrated body
force and ql is the extrinsic equilibrated body force.
These terms have been discussed in detail in [11, 13].

The constitutive equations for the linear isotropic
theory of elastic porous materials relate the stress
tensor, ¹

i j
, the equilibrated stress vector, h

i
, and in-

trinsic equilibrated body force, g, to the strain, e
ij
, the

change, /, in volume fraction, the time rate, /0 , of
change in the volume fraction and the gradient, /

,i
, of

the change in volume friction; thus
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Here k and l are the Lamé constants; b is a coupling
factor, which is a measure of the coupling between the
displacement deformation and the change of the local
volume fraction; a, x and n are the ‘‘diffusion factor’’,
they damping coefficient and the reflux factor of the
change in the local volume fraction, respectively. Be-
cause the strain energy with respect to the reference
configuration is positive definite, the coefficient k, l, a,
b, n and x depend on v

3
and satisfy the following

inequalities:

l*0 a*0 n*0 x*0
(13)

3k#2l*0 (3k#2l)n*3b2

In the absence of a body force b
i
and ql, the field

equations governing the displacement field u
i
(x, t) and

the local volume fraction field / (x, t) are obtained by
substituting the constitutive relations in Equations
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10—12 into the equations of motion given by Equa-
tions 8 and 9 as

(k#l)$$ · u#l+2u#b$/"qü (14)

a+2/!x/!n/!b$ · u"qj/® (15)

These two equations, one vector and one scalar,
represent a system of four scalar equations in four
unknowns: / and the three components of u

i
. The

boundary conditions on u
i
are those of classical elas-

ticity. The boundary condition on / is

n · $/"0 (16)

where n is the unit normal to the external boundary.
Plane acoustic waves are solutions of Equation 14

and 15 for which the displacement vector, u
i
, and the

volume fraction difference, /, are of the form

u
i
"Ad

i
º (x, t) /"Bº (x, t) (17)

where

º(x, t)"Re(exp[i( ft!wx
i
)]) (18)

Here d
i
are the direction cosines of the displacement

vector, u(x, t), f is the frequency and w is a complex
number such that Im w(0. A and B are the ampli-
tudes of the displacement and volume fraction change
waves, respectively. Substitution of Equations 17 and
18 into Equations 14 and 15 yields

[(k#2l)w2!qf 2]A#ibwB"0 (19)

(aw2#ixf!qj f 2#n)B!ibwA"0 (20)

For the pair of Equations 19 and 20 to have a non-
trivial solution for A and B we must set the determi-
nant of their coefficients equal to zero; thus

[(k#2l)w2!qf 2] (aw2#ixf#n!qjf 2)!b2w2"0

(21)

Equation 21 is the dispersion relation for the waves of
the volume fraction. There are four wave velocities of
interest. They are denoted by c

1
to c

4
and are defined

as follows:
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These material parameters, which are defined as
follows, are simple algebraic combinations of the
material properties:
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Using the notations in Equations 22 and 23, Equation
21 can be rewritten as
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Our analysis of the dispersion relation in Equation 24
will follow that of Puri [14] for thermoelastic waves.
The information obtained from the dispersion relation
includes the wavenumber, the wave speeds and the
attenuation coefficient. The wavenumbers are the real
part of w and the wave speeds are the frequency
divided by the wavenumber. The attenuation coeffi-
cients are minus the imaginary part of w. Because the
IF of foamed Al results from the change in the local
distribution of the matrix, i.e., the dilatation and dis-
tortion of pores, the IF, Q~1, can be written as

Q~1"2n4pa2 *a
Im w

Re w
(25)

Here n is the pore number per unit volume, a is the
mean radius of pores and *a is an increment of a. n is
given by

n"
3C

4pa3
(26)

where C is the volume fraction of pores.
The two solutions of Equation 24 will be designated

as w2
%

and w2
7
. w2

%
is associated with a wave that is

predominantly an elastic wave and w2
7

is associated
with a wave that is predominantly a volume fraction
wave. For high frequencies, from Equation 24, we can
write
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Using Equations 26—28, Equation (25) can be written
as
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Hence, Q~1Jf ~1, which is the main result of this
section. From Equation 29, it can be seen that the IF is
decreased as the frequency is raised. This is consistent
with the experimental results as shown in Fig. 1. We
therefore may draw the conclusions as follows. The IF
is related to the pore size and the pore volume fraction
or the porosity. For constant porosity and other iden-
tical condition a large pore size causes a smaller IF.
This conclusion is consistent with the pore size de-
pendence observed by Yu and He [3]. For constant
pore size and other identical conditions a higher por-
osity causes a larger IF. This is consistent with the
porosity dependence observed in this work and ob-
served in the literatures [2, 4]. Using the data from
Tables I and II, the IF was plotted versus pore para-
meters C/a(1!C) in Fig. 2. Fig. 2 shows that the IF is
not a smooth linear function of the pore parameter
C/a(1!C), but that fluctuations in the IF are ob-
served. We believe that the fluctuations in the IF are
caused by an inhomogeneous material distribution.



Figure 2 The relation between IF and pore parameter.

Foamed Al is a statistical system and therefore a cer-
tain spatial variation in density and pore size cannot
be avoided. The inhomogeneous distribution in the
sample will give rise to changes in the porosity and
pore size for any of samples and, correspondingly, lead
to a change in the values of IF. We think that these
changes will decrease if the samples are made larger,
but in our case this is not possible owing to the
limitations of experimental conditions (Recently, we
measured the IF of large foamed Al specimens in
a dynamic viscoelastic analyser (IMASS Company);
the IF was a better linear function of the pore para-
meter C/a(1!C)).

3.4. The amplitude effect of the internal
friction of foamed Al

IF amplitude effects of FAl and FAl* are shown in
Fig. 3 which shows that the IF is raised when the
amplitude is raised. The IF of foamed Al depends
non-linearly on the strain amplitude.

In order to study the non-linear dependence on
amplitude, the resonant peak of foamed Al and the
dependence of resonant frequency on amplitude were
investigated. The relations between the square of the
relative amplitude and the difference of excitation
frequency with respect to the resonant frequency for
sample FAl* and bulk Al are shown in Fig. 4. From
this figure we can see that the resonant peak of foamed
Al is asymmetric, whereas the resonant peak of bulk
Al is symmetric.

For foamed and bulk Al the relations between the
square of amplitude and the resonant frequency are
shown in Fig. 5. For foamed Al, the resonance fre-
quency decreases with increasing amplitude. For bulk
Al, the resonant frequency is independent of the am-
plitude.

One distinguishing feature between linear and non-
linear behaviour is the dependence of the frequency of
the motion in non-linear vibration on the amplitude.
For foamed Al, the equation of oscillations is non-
linear whereas for bulk Al it is linear. On the basis of
the considerations in Section 3.3, let us consider oscil-
lations of foamed material. In solving the damping
Figure 3 Strain-amplitude dependence of the IF of FAI* (d)
and FA1 (s). Line 1, y"0.001 78#0.000 34x; line 2, y"
0.005 75#0.001 52x.

Figure 4 The relations between the square of relative amplitude
and the difference between the excitation frequency and the reson-
ant frequency (—d—), FA1* resonance frequency, 1010.4 Hz;
(—s—) Al resonance frequency, 998.2 Hz.

Figure 5 The relations between the square of the amplitude and
the resonant frequency (—s—), AL; (d), FA1*; line 1,
½"1008.93—0.0114X.

problem of forced oscillations, it is reasonable that the
equation of the motion can be written as

/® #2x/0 #f 2
0
/"

F

m
exp(i ft) (30)
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where x is the damping coefficient, f
0

and f are the
eigenfrequency and the excitation frequency, respec-
tively, and F and m are the amplitude of the force
and the mass, respectively. The equation of motion
is linear. We seek a solution of the form /"

B exp(id) exp(i ft). We have

B"

F

m[( f 2
0
!f 2)2#4x2f 2]1@2

(31)

For a given amplitude F of the force, the amplitude of
the oscillation is greatest when

f"( f 2
0
!2x2)1@2 (32)

Let us consider the range near resonance, putting
f"f

0
#f with f small, and suppose that x;f

0
. Then

we can approximately put f 2!f 2
0
+2f

0
f in Equation

31, so that

B2"
F2

4m2f 2
0

(f2#x2)
(33)

It shows that the resonance curve is a symmetric curve
with a maximum at the point f"0 (as shown in
Fig. 6a). When the damping coefficient decreases, the
resonance curve becomes more peaked. Using Equa-
tion 33, the IF can be written as

Q~1"
2x

( f 2
0
!2x2)1@2

+

2x
f
0

(34)

When the anharmonic terms in the forced oscillations
of a system are taken into account, the phenomena of
resonance acquire new properties. The non-linearity
of the damping oscillations results in the appearance
of an amplitude dependence of the eigenfrequency or
the resonant frequency, which is usually accompanied
by an amplitude dependence of IF. As usual, there are
three cases that result in non-linear oscillation. The
resoring force is non-linear (hardening and softening),
the damping force is proportional to the square of
velocity and the damping force is related not only to
the velocity but also to the displacement. Since the IF
of foamed Al depends on the amplitude in the range of
low frequency [3], we may think that the non-linearity
of the oscillation does not result from the second case.
If the non-linearity of the oscillation is caused by the
first case, we write the amplitude dependence of the
eigenfrequency as f

0
#C

!/
B2, the constant C

!/
being

the anharmonic coefficient [15]. Accordingly, we re-
place f

0
by f

0
#C

!/
B2 in Equation 32. The resulting

equation is

B2"
F2

4m2[(f!C
!/

B2)2#x2]
(35)

When the constant C
!/

is negative, the eigenfrequency
decreases with increasing amplitude and the reson-
ance curve is asymmetric (as shown in Fig. 6b), which
is consistent with the experimental results shown in
Fig. 4. According to Equation 34, the IF can be writ-
ten as Q~1"2x/( f

0
#C

!/
B2). From Fig. 5, we can

conclude that C
!/

B2 is of the order of 1 Hz (;f
0
).

Hence, in this case the amplitude dependence of the IF
can be ignored, which is in conflict with the experi-
mental results shown in Fig. 3. From the considera-
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Figure 6 Schematic diagrams of resonance curves: (a) for a linear
damping system with a linear softening restoring force; (b) for
a linear damping system with a non-linear softening restoring force
respectively; (c) for a non-linear damping system with a linear
restoring force.

tion above, it might be the third case that results in the
non-linearity of the oscillations. In Equation 30, the
damping term, 2x/0 , will be rewritten as 2x/0 "2x

0
/0

#2x
1
//0 . The non-linearity of the damping term

results in the appearance of an amplitude dependence
of the damping coefficient and it does not result in an
amplitude dependence of the eigenfrequency but re-
sults in an amplitude dependence of the resonant
frequency, f

3
, which we write as

f
3
"( f 2

0
!2x2)1@2!C@

!/
B2
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0
!

21@2

2
(x#C@@

!/
21@2B2) (36)

According to Equation 32, we may write the ampli-
tude dependence of the damping coefficient as

x"(x
0
#C@

!/
21@2B2)"x

0
(1#C@@

!/
B) (37)

Thus the expressions for the amplitude and IF may be
written as
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0
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f
0
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According to Equations 36, 38 and 39, the resonant
frequency is proportional to amplitude with a negative



slope, the resonant curve of oscillations of asymmetric
as shown in Fig. 6c, and the IF is proportional to
amplitude. This is in agreement with the experimental
results shown in Figs 3—5. Therefore, on the basis of
the above consideration and consideration in Section
3.3, the damping coefficients may be written as
[C/a(1!C)]x

0
(1#C@@

!/
B).

4. Conclusions
The IF of foamed Al was measured and its mecha-
nisms were discussed. The non-linearity of oscillations
of foamed Al was observed and analysed. The main
results of the investigation are as follows.

1. The attenuation in foamed Al is not caused by
the usual mechanism but by the pores. Pores in
foamed Al may be high-energy dissipation resources.
It is the change / (x, t), in local volume fraction from
the reference volume fraction that causes high-energy
dissipation in foamed Al.

2. The IF of foamed Al increases with increasing
porosity when the pore size is kept constant whereas,
when the porosity is kept constant, it decreases with
increasing pore size.

3. The IF of foamed Al decreases with increasing
frequency in the range of high frequencies.

4. The IF is raised when the amplitude is raised.
5. The non-linearity of oscillations results from the

non-linearity damping term.
6. The non-linear damping coefficient may be ap-

proximately expressed as [C/a(1!C)]x
0
(1#C@@

!/
B),

where a is the mean radius of pores, C is the volume
fraction of pores, x

0
is called the damping coef-
ficient, CA
!/

is a constant and B is the amplitude of the
oscillation.
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